Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis[(1-ammonio-1-phosphonoethyl)phosphonato]zinc(II) tetrahydrate

A. Dudko,* V. Bon, A. Kozachkova and V. Pekhnyo

Institute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680 Ukraine

Correspondence e-mail: dudco_anatolij@ukr.net

Received 6 March 2009; accepted 23 March 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.081; data-to-parameter ratio = 12.3.

The title compound, $[Zn(C_2H_8NO_6P_2)_2(H_2O)_4]\cdot 4H_2O$, was synthesized by the reaction of $ZnCl_2$ with 1-aminoethane-1,1diyldiphosphonic acid in aqueous solution. The asymmetric unit contains one-half of the complex and two water molecules of solvation. The Zn atom occupies a special position on an inversion centre. This results in a slightly distorted octahedral coordination environment, which consists of the O atoms from two phosphonic acids and four water molecules. The crystal structure displays $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphosphonic acids are efficient drugs for the prevention of calcification and the inhibition of bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis, see: Szabo *et al.* (2002). For related structures, see: Li *et al.* (2006, 2007); Lin *et al.* (2007).

c = 10.7009 (7) Å

 $= 102.080 (3)^{\circ}$

V = 549.65 (6) Å³

 $\alpha = 96.440 \ (3)^{\circ}$ $\beta = 90.788 \ (3)^{\circ}$

Experimental

Crystal data $[Zn(C_2H_8NO_6P_2)_2(H_2O)_4] \cdot 4H_2O$ $M_r = 617.57$ Triclinic, $P\overline{1}$ a = 5.6712 (4) Å b = 9.3279 (6) Å

```
Z = 1
Mo K\alpha radiation
\mu = 1.50 \text{ mm}^{-1}
```

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: numerical
```

(SADABS; Bruker, 2005) $T_{min} = 0.612, T_{max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.081$ S = 1.002244 reflections 182 parameters 1 restraint 8897 measured reflections 2244 independent reflections

 $0.36 \times 0.10 \times 0.04 \text{ mm}$

2244 independent reflections 1747 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O6^{i}$	0.93 (4)	1.96 (4)	2.796 (4)	150 (3)
$N1 - H1B \cdot \cdot \cdot O10$	0.85 (4)	1.99 (4)	2.827 (4)	168 (3)
$N1 - H1C \cdot \cdot \cdot O3^{i}$	0.90 (4)	2.01 (4)	2.851 (3)	153 (3)
$O2-H2O\cdots O3^{ii}$	0.78 (3)	1.76 (3)	2.536 (3)	172 (4)
$O5-H5O\cdots O6^{iii}$	0.793 (18)	1.726 (19)	2.519 (3)	177 (4)
$O7 - H71 \cdot \cdot \cdot O8^{iv}$	0.84 (4)	2.05 (4)	2.826 (3)	155 (3)
O7−H72···O10	0.76 (4)	2.00 (4)	2.748 (3)	168 (4)
O8−H81···O2	0.82 (4)	1.97 (4)	2.772 (3)	163 (3)
O8−H82···O9	0.86 (4)	1.79 (4)	2.646 (3)	174 (3)
$O9-H91\cdots O5^{v}$	0.87 (4)	1.94 (4)	2.810 (3)	172 (3)
$O9-H92\cdots O4^{vi}$	0.83 (4)	1.91 (4)	2.715 (3)	165 (4)
O10−H101····O4 ^{vii}	0.85 (4)	1.90 (4)	2.744 (3)	175 (3)
$O10-H102\cdots O9^{iv}$	0.80 (4)	1.96 (4)	2.741 (3)	167 (4)

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 2, -z; (iv) -x + 1, -y + 1, -z + 1; (v) x, y, z + 1; (vi) -x, -y + 1, -z + 1; (vii) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2201).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). *Cryst. Growth Des.* 6, 1250–1255.

Li, M. & Sun, J.-T. (2007). Acta Cryst. E63, m1370-m1372.

- Lin, L., Zhang, T., Fan, Y., Ding, D. & Hou, H. (2007). J. Mol. Struct. 837, 107–117.
- Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894– 2903.

Westrip, S. P. (2009). publCIF. In preparation.

T = 173 K

supplementary materials

Acta Cryst. (2009). E65, m459 [doi:10.1107/S1600536809010599]

Tetraaquabis[(1-ammonio-1-phosphonoethyl)phosphonato]zinc(II) tetrahydrate

A. Dudko, V. Bon, A. Kozachkova and V. Pekhnyo

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon *et al.*, 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo *et al.*, 2002). The asymmetric unit of title compound contains one-half of the formula unit (Fig. 1); Zn atom occupy special position at the inversion centre and creates a slightly distorted octahedral coordination environment, which consist of two phosphonic and four aqueous oxygen atoms. The coordinated diphosphonic acids residue exist as zwitterions with positive charge on NH₃ group and negative on the oxygen atom of the non-coordinated phosphonic group. The crystal structure displays N—H…O and O—H…O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2).

Experimental

10 ml of the $0.01 M \text{ZnCl}_2$ aqueous solution was added to the 10 ml of 0.02 M water solution of 1-aminoethane-1,1dividiphosphonic acid. Colorless crystals of title compound were obtained after 2 weeks of slow evaporation of the resulted solution.

Refinement

H atoms bonded to N and O were located in a difference map and were freely refined with $U_{iso}(H) = 1.2 U_{eq}$ of the carrier atom. Other H atoms which bonded to C were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH₃ [$U_{iso}(H) = 1.5Ueq(C)$].

Figures

Fig. 1. The title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms [Symmetry code: (i) -x, 1 - y, 1 - z].

Fig. 2. Crystal packing of title compound, projection along *a* axis. Dashed lines indicate hydrogen bonds.

Tetraaquabis[(1-ammonio-1-phosphonoethyl)phosphonato]zinc(II) tetrahydrate

Z = 1 $[Zn(C_2H_8NO_6P_2)_2(H_2O)_4]$ ·4H₂O $F_{000} = 320$ $M_r = 617.57$ $D_{\rm x} = 1.866 {\rm Mg m}^{-3}$ Triclinic, P1 Mo Kα radiation Hall symbol: -P 1 $\lambda = 0.71073 \text{ Å}$ a = 5.6712 (4) ÅCell parameters from 2105 reflections $\theta = 2.3 - 25.9^{\circ}$ b = 9.3279 (6) Å *c* = 10.7009 (7) Å $\mu = 1.50 \text{ mm}^{-1}$ *T* = 173 K $\alpha = 96.440 (3)^{\circ}$ $\beta = 90.788 (3)^{\circ}$ Block, colourless $0.36 \times 0.10 \times 0.04 \text{ mm}$ $\gamma = 102.080 \ (3)^{\circ}$ V = 549.65 (6) Å³

Data collection

Bruker APEXII CCD diffractometer	2244 independent reflections
Radiation source: fine-focus sealed tube	1747 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
Detector resolution: 8.26 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}$
T = 173 K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: numerical (SADABS; Bruker, 2005)	$k = -11 \rightarrow 10$
$T_{\min} = 0.612, \ T_{\max} = 0.945$	$l = -13 \rightarrow 13$
8897 measured reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.037$

 $wR(F^2) = 0.081$

S = 1.00

2244 reflections

182 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0395P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.39 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.47 \text{ e } \text{Å}^{-3}$ Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.0000	0.5000	0.5000	0.01171 (16)
P1	0.02405 (14)	0.80873 (8)	0.37915 (7)	0.01033 (19)
P2	-0.00669 (14)	0.81048 (9)	0.09143 (7)	0.0116 (2)
C1	0.1808 (5)	0.8672 (3)	0.2381 (3)	0.0109 (6)
C2	0.2791 (6)	1.0348 (3)	0.2544 (3)	0.0176 (7)
H2A	0.3983	1.0614	0.3248	0.026*
H2B	0.1461	1.0855	0.2716	0.026*
H2C	0.3557	1.0644	0.1770	0.026*
N1	0.3905 (5)	0.7921 (3)	0.2240 (3)	0.0133 (6)
H1A	0.483 (6)	0.830 (4)	0.160 (3)	0.020*
H1B	0.349 (6)	0.699 (4)	0.208 (3)	0.020*
H1C	0.485 (6)	0.807 (4)	0.295 (3)	0.020*
01	-0.0090 (4)	0.6449 (2)	0.37040 (19)	0.0135 (5)
O2	0.2165 (4)	0.8783 (2)	0.4886 (2)	0.0143 (5)
H2O	0.206 (6)	0.956 (4)	0.519 (3)	0.017*
03	-0.1966 (4)	0.8741 (2)	0.39210 (19)	0.0139 (5)
O4	-0.0857 (4)	0.6470 (2)	0.0759 (2)	0.0181 (5)
05	0.1793 (4)	0.8548 (2)	-0.0123 (2)	0.0148 (5)
H5O	0.182 (6)	0.931 (3)	-0.039 (3)	0.018*
O6	-0.1990 (4)	0.8997 (2)	0.0930 (2)	0.0156 (5)
07	0.1908 (4)	0.3844 (3)	0.3764 (2)	0.0183 (5)
H71	0.319 (7)	0.371 (4)	0.408 (3)	0.022*
H72	0.204 (7)	0.413 (4)	0.312 (4)	0.022*
08	0.3234 (4)	0.6366 (3)	0.5883 (2)	0.0152 (5)
H81	0.311 (6)	0.719 (4)	0.571 (3)	0.018*
H82	0.300 (6)	0.633 (4)	0.667 (4)	0.018*
09	0.2666 (4)	0.6106 (3)	0.8304 (2)	0.0181 (5)
H91	0.228 (6)	0.681 (4)	0.882 (3)	0.022*
H92	0.189 (6)	0.532 (4)	0.852 (3)	0.022*
O10	0.3107 (4)	0.4849 (3)	0.1490 (2)	0.0187 (5)
H101	0.236 (6)	0.448 (4)	0.079 (4)	0.022*
H102	0.437 (7)	0.460 (4)	0.143 (3)	0.022*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0117 (3)	0.0109 (3)	0.0129 (3)	0.0029 (2)	0.0003 (2)	0.0021 (2)
P1	0.0105 (4)	0.0103 (4)	0.0105 (4)	0.0031 (3)	0.0003 (3)	0.0009 (3)
P2	0.0115 (4)	0.0125 (4)	0.0116 (4)	0.0031 (3)	-0.0009 (3)	0.0035 (3)
C1	0.0096 (15)	0.0088 (15)	0.0146 (16)	0.0030 (12)	0.0003 (12)	0.0007 (12)
C2	0.0208 (18)	0.0114 (16)	0.0183 (18)	-0.0021 (13)	0.0001 (14)	0.0017 (13)
N1	0.0105 (14)	0.0155 (15)	0.0134 (15)	0.0010 (12)	-0.0017 (11)	0.0032 (12)
O1	0.0179 (12)	0.0093 (11)	0.0133 (12)	0.0028 (9)	0.0007 (9)	0.0011 (8)
O2	0.0164 (12)	0.0141 (12)	0.0129 (12)	0.0067 (10)	-0.0032 (9)	-0.0032 (9)
O3	0.0118 (11)	0.0150 (12)	0.0154 (12)	0.0049 (9)	-0.0013 (9)	-0.0004 (9)
O4	0.0224 (13)	0.0143 (12)	0.0158 (12)	0.0001 (9)	-0.0047 (10)	0.0013 (9)
05	0.0187 (12)	0.0118 (12)	0.0167 (12)	0.0061 (10)	0.0061 (9)	0.0080 (9)
O6	0.0113 (11)	0.0206 (12)	0.0178 (12)	0.0060 (9)	0.0024 (9)	0.0092 (9)
07	0.0186 (13)	0.0225 (13)	0.0162 (13)	0.0090 (10)	-0.0004 (11)	0.0043 (10)
08	0.0146 (12)	0.0139 (12)	0.0181 (13)	0.0034 (10)	-0.0017 (10)	0.0054 (10)
09	0.0201 (13)	0.0148 (12)	0.0199 (13)	0.0042 (10)	0.0041 (10)	0.0025 (10)
O10	0.0152 (13)	0.0239 (13)	0.0176 (13)	0.0072 (11)	-0.0022 (10)	-0.0004 (10)

Geometric parameters (Å, °)

Zn1—O1	2.050 (2)	C2—H2A	0.9800
Zn1—O1 ⁱ	2.050 (2)	C2—H2B	0.9800
Zn1—O7 ⁱ	2.071 (2)	C2—H2C	0.9800
Zn1—O7	2.071 (2)	N1—H1A	0.93 (4)
Zn1—O8 ⁱ	2.141 (2)	N1—H1B	0.85 (4)
Zn1—O8	2.141 (2)	N1—H1C	0.90 (4)
P1—O1	1.492 (2)	O2—H2O	0.78 (3)
P1—O3	1.504 (2)	О5—Н5О	0.793 (18)
P1—O2	1.575 (2)	O7—H71	0.84 (4)
P1—C1	1.839 (3)	O7—H72	0.76 (4)
P2—O4	1.486 (2)	O8—H81	0.82 (4)
P2—O6	1.503 (2)	O8—H82	0.86 (4)
P2—O5	1.571 (2)	O9—H91	0.87 (4)
P2—C1	1.846 (3)	О9—Н92	0.83 (4)
C1—N1	1.502 (4)	O10—H101	0.85 (4)
C1—C2	1.535 (4)	O10—H102	0.80 (4)
01—Zn1—O1 ⁱ	179.999 (1)	N1—C1—P1	107.2 (2)
O1—Zn1—O7 ⁱ	90.77 (9)	C2-C1-P1	110.6 (2)
O1 ⁱ —Zn1—O7 ⁱ	89.23 (9)	N1—C1—P2	106.55 (19)
O1—Zn1—O7	89.23 (9)	C2—C1—P2	110.3 (2)
Ol ⁱ —Zn1—O7	90.77 (9)	P1—C1—P2	113.58 (16)
O7 ⁱ —Zn1—O7	180.00 (11)	C1—C2—H2A	109.5
O1—Zn1—O8 ⁱ	88.74 (9)	C1—C2—H2B	109.5
O1 ⁱ —Zn1—O8 ⁱ	91.26 (9)	H2A—C2—H2B	109.5

O7 ⁱ —Zn1—O8 ⁱ	92.46 (9)	C1—C2—H2C	109.5
O7—Zn1—O8 ⁱ	87.54 (9)	H2A—C2—H2C	109.5
O1—Zn1—O8	91.27 (9)	H2B—C2—H2C	109.5
O1 ⁱ —Zn1—O8	88.73 (9)	C1—N1—H1A	108 (2)
O7 ⁱ —Zn1—O8	87.54 (9)	C1—N1—H1B	114 (2)
O7—Zn1—O8	92.46 (9)	H1A—N1—H1B	110 (3)
O8 ⁱ —Zn1—O8	180.0	C1—N1—H1C	113 (2)
O1—P1—O3	118.11 (12)	H1A—N1—H1C	108 (3)
O1—P1—O2	107.82 (12)	H1B—N1—H1C	104 (3)
O3—P1—O2	111.01 (12)	P1—O1—Zn1	133.80 (13)
O1—P1—C1	107.13 (13)	P1—O2—H2O	115 (3)
O3—P1—C1	108.84 (13)	Р2—О5—Н5О	118 (3)
O2—P1—C1	102.79 (13)	Zn1—O7—H71	113 (2)
O4—P2—O6	117.67 (13)	Zn1—O7—H72	114 (3)
O4—P2—O5	108.21 (12)	H71—O7—H72	114 (4)
O6—P2—O5	110.56 (12)	Zn1—O8—H81	101 (2)
O4—P2—C1	108.34 (13)	Zn1—O8—H82	103 (2)
O6—P2—C1	108.52 (13)	H81—O8—H82	108 (3)
O5—P2—C1	102.44 (13)	H91—O9—H92	106 (3)
N1—C1—C2	108.4 (3)	H101—O10—H102	103 (3)
O1—P1—C1—N1	-47.7 (2)	O6—P2—C1—C2	-54.5 (2)
O3—P1—C1—N1	-176.47 (18)	O5—P2—C1—C2	62.5 (2)
O2—P1—C1—N1	65.8 (2)	O4—P2—C1—P1	-58.45 (19)
O1—P1—C1—C2	-165.7 (2)	O6—P2—C1—P1	70.38 (18)
O3—P1—C1—C2	65.6 (2)	O5—P2—C1—P1	-172.68 (15)
O2—P1—C1—C2	-52.2 (2)	O3—P1—O1—Zn1	-92.94 (19)
O1—P1—C1—P2	69.67 (18)	O2—P1—O1—Zn1	33.8 (2)
O3—P1—C1—P2	-59.08 (18)	C1—P1—O1—Zn1	143.85 (17)
O2—P1—C1—P2	-176.85 (15)	O7 ⁱ —Zn1—O1—P1	41.88 (18)
O4—P2—C1—N1	59.3 (2)	O7—Zn1—O1—P1	-138.12 (18)
O6—P2—C1—N1	-171.88 (19)	O8 ⁱ —Zn1—O1—P1	134.32 (18)
O5—P2—C1—N1	-54.9 (2)	O8—Zn1—O1—P1	-45.68 (18)
O4—P2—C1—C2	176.7 (2)		
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···O6 ⁱⁱ	0.93 (4)	1.96 (4)	2.796 (4)	150 (3)
N1—H1B…O10	0.85 (4)	1.99 (4)	2.827 (4)	168 (3)
N1—H1C···O3 ⁱⁱ	0.90 (4)	2.01 (4)	2.851 (3)	153 (3)
O2—H2O···O3 ⁱⁱⁱ	0.78 (3)	1.76 (3)	2.536 (3)	172 (4)
O5—H5O····O6 ^{iv}	0.793 (18)	1.726 (19)	2.519 (3)	177 (4)
O7—H71…O8 ^v	0.84 (4)	2.05 (4)	2.826 (3)	155 (3)
O7—H72…O10	0.76 (4)	2.00 (4)	2.748 (3)	168 (4)
O8—H81…O2	0.82 (4)	1.97 (4)	2.772 (3)	163 (3)

supplementary materials

O8—H82···O9	0.86 (4)	1.79 (4)	2.646 (3)	174 (3)	
O9—H91…O5 ^{vi}	0.87 (4)	1.94 (4)	2.810 (3)	172 (3)	
O9—H92…O4 ⁱ	0.83 (4)	1.91 (4)	2.715 (3)	165 (4)	
O10—H101···O4 ^{vii}	0.85 (4)	1.90 (4)	2.744 (3)	175 (3)	
O10—H102····O9 ^v	0.80 (4)	1.96 (4)	2.741 (3)	167 (4)	
Symmetry codes: (ii) x+1, y, z; (iii) -x, -y+2, -z+1; (iv) -x, -y+2, -z; (v) -x+1, -y+1, -z+1; (vi) x, y, z+1; (i) -x, -y+1, -z+1; (vii) -x, -y+1, -z+1; (vii) -x, -y+2, -z+1; (vii) -x, -y+1, -z+1; (vii) -x, -z+1; (vii) -x, -y+1, -z+1; (vii) -x, -y+1, -z+1; (vii) -x, -y+1;					

-*y*+1, -*z*.

Fig. 2

